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On a one-dimensional system associated with a gl(mln) vertex 
model 

Junji Suzuki 
lnrtilute of Physics, College of A n s  and Sciences, University of lbkyyo, Komaba 3-8-1. 
Meguro-tu, Tokyo. Japan 

Received 24 Ioac !'E!, il! 8aa! fg!z! ?! &:!!ay !W? 

AbslraeL A one-dimensional (ID) system associated with a gl(mln) yerlex model is 
investigated. We add a chemical potential lem so that the model reduces to the 
supersymmetric 1-J model for ("I,),) = ( 2 , l ) .  It is conjectured that lhe ground 
stale of the model posswes W(m) symmetry in the rational limit. Ihe observation 
by Kawabmi and Yang on the L-J model is extended to a more general lheorem of 
Ihe 1D field theory: The 1-J model is just an a m p l e  of the present model, and such 
systems can be described by a multi-component Gaussian mode! mmpanified on tori 
with different radii. 

1. Intmduction 

Sqxrsyymmetrir mode!s h !ow dimensions I r e  providing :went the!"! prob!em-. 
IIb give an example, the representation theory for quantization of a Lie superalgebra 
[ l ]  is a subject of interest. The  universal R-matrix of asp(211) is discussed by 
Kulish and Reshetikhin [2]. Saleur [3] obtained the osp(2 l l )  R-matrix with spectral 
parameter by generalizing the method developed by Drienfeld [4] and Jimbo [SI. He 
found that it is essentially given by the Boltzmann weight for the 19-vertex model (or 
the SU(2) level 2 Wess-Zumino-Witten model). Deguchi and Akutsu [6] obtained 
the link invariant from the gl(?t~In) model. Deguchi and Fujii [7], and Okado [SI 
have recently solved the IRF model associated with sl(m1n). 

The mathematical structure underlying supersymmetric models has been unveiled 
by these works. It seems, however, that their physical nature remains unclear. 

In this article, we present some numerical and analytical studies of a quantum one- 
dimensional (ID) system associated with a gl(m(n) vertex model in two dimensions 
[S-12j. We study the limiting case of a chemical potential term so that the model 
reduces to the supersymmetric t-J model [13-161 for (m,n.)  = ( 2 , l ) t .  It is found 
that he ground state possesses SU(?n) symmetry. Our result suggests that the 
model can be described by a multi-component Gaussian system compactified on tori 
with different radii. This is a straightfonvard generalization of the observation by 
Kawakami and Yang [16]. 

This paper is organized as follows. In the next section, we introduce the gl(mln) 
vertex model o n  a square lattice and its ID counterpart solved by Perk and Schultz 

t The term 'supersymmetric' is somewhat misleading. The Hamiltonian lor the solvable t-J model does 
no1 mmmute with tlie action of gl (2 l l )  as pointed oul by Bares and Blatter [IS]. 
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[9-121. The definition of the model and known results are reviewed. We present 
the results of the direct diagonalization of the Hamiltonian in the 'rational' case in 
section 3. From these data, we conjecture the ground state configuration. We analyse 
the low excitations near the ground state .by making use of the Bethe ansatz equation 
(the BAE, for short). We also interpret this model in terms of field theory. In the last 
section, we present several open questions arising from this study . 

2. The model and known results 

Several years ago, Perk and Schultz [9-121 solved a gl(nln) vertex model on a square 
lattice and its 1D counterpart. This section is devoted to a simple explanation of their 
models. We assign edge mriables p = 1, .  , . , q + l , ( q  + 1 = m + n )  to each 
horizontal and vertical bond on a square lattice. Possible configurations at a vertex 
are given in figure 1, and the corresponding vertex weights are given by 

(f( A - e, .) ,  G,,o f(u), f(X)eg(")) a # P a, P = 1 , .  . . ,q  + 1 (1) 

where 

f(u) = sin(u)  or s inh(u)  

or g ( u )  = iu 

and e ,  = il. G,,o are arbitrary constants satisfying G,,@Go,* = 1. Here we adopt 
slightly simpler vertex weights than the original ones. 

s g n ( a  - P )  - z ( a  - P )  
( 4  + 1) 

U 
sgn(a  - P )  - 2 ( a  - P )  

( n  + 1) 

0 D D 

U b P 

Figure 1. Allowed venex configuralians. 

In the following, we assume that the first m E'S are 1 and the remainder -1. 
A periodic boundary condition is also assumed. We denote the number of vertical 
bonds with colour a by n,. As is immediately seen, the n,(a = 1, .  . . q + 1) are 
conserved quantities. Thus we can specify a state by ( n , ,  . . . , n,?,). 

A solvable 1~ Hamiltonian associated with this verrex model IS given by [ l l ]  

01 
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where e,,o denotes the matrix element; {e , ,p )a ,b  = 6,,,6,,o, the superscript 'i' 
represents the position in the chain and 

k ( A )  = cos(A) or cosh(X). 

h, are arbitrary numbers, which will be referred to as the chemical potential. 
The BAE for this system reads [12] as 

where N represents the linear size of system. The second equation is valid for 
0 = 2 , .  . . , q - 1. Here the xy are related to quasi momenta, and are given by the 
roots of this BAE. In terms of z), we can represent the energy per site as 

Note that the BAE and the energy is independent of G,,p. We also remark that the 
number of roots N ,  or, equivalently, the numbers of x; are related to nu defined 
previously by 

N - NI = n, N ,  - N ,  = n2,  

N9-, - N9 = n ,  N ,  = n 9 + l '  

In principle, all eigenvalues are obtained by solving this BAE. Perk and Schultz [I l l  
found that the ground state is frozen if f(u) = s inh(u)  and h, = 0 for a = 
m + 1, .  . , m + n. The ground state has a ferromagnetic-like configuration in this 

I '"J 01' 

We do not know, however, how to locate the roots of the BAE for the ground 
state in general. We avoid making assumptions on the distribution of the roots of 
the BAE. Instead, we diagonalize numerically the Hamiltonian (2) for small chains 
applying the method developed by Householder and Lanczos. 

0 riwh that = 1 2nd h = m a ~ h  case: 11, = .hi f9)r ; ""l.. I.". 
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3. Results of numerical diagonalization 

In this section, we study the rational case U - uX, X -+ 0. There is some arbitrariness 
in determining the explicit forms for h ,  in the last term of the Hamiltonian (2). We 
fa it in the following way. For ( m , n )  = ( Z , ~ ) , ( ~ , E ~ , C ~ )  = ( l , l , - 1 )  and we 
regard edge variables 1 , 2 , 3  as the up-electron, downelectron and hole, respectively. 
The supersymmetric t-J model has the same matrix element as our model if we 
choose 

(i) h ,  = -ea 
(ii) X -+ 0 
(iii) G,,2 = G2,1 = -1 and other G,,@ to be 1. 
Then the Hamiltonian is [17] 

where F ( 0 )  = O , O ,  1 for p = 1 , 2 , 3  respectivelyt. As a check we have compared 
the ground-state energy of this model with that of the XXX model. We verlfy that 
they indeed agree and will converge to -2 log 2 113, 141 in the infinite lattice limit. 

In the following, we consider the rational limit of the model equation (2'), but the 
i n d e x a r u n s a s l ,  ..., m + n .  

We present our results for ( m , n )  = ( 2 , l )  and (3,l) in figures ?.(a) and (b) and 
tables 1 and 2. 

'hbk 1. Explicit values of energies per Site for the gl(2ln) model. We present the 
wlues of the lowest energies among 'spin' (or 'charge') excited states in the mrresponding 
mlumns. 

System size Ground-slate energy Spin acitation Charge excitation 

4 -1.503 WO 0 - 1 . w o M o o  - 1.207 1M 8 
6 -1.434258 5 - 1.206011 3 - 1.271 202 I 
8 -L.-L.,,<7 ~ - 1  ",,,,lA - - ! . 2 ? ! % 8  -!.30!895? 

10 -1.403 0893  -1.3184415 - 1.319 7893 
12 -1.3978985 - 1.338 5906 -1.3314746 

lkbk 2. Explicit values of energies per site for gl(31n) model 

System size Groundstate energy Spin excitation Oarge acitation 

3 -2.m coo 0 - 1.3333333 - 1.3333333 
6 -1.767591 9 - 1.604 535 5 - 1.498 5026 
9 - 1.731 048 4 -1.6580387 -1,5638708 

12 - 1.718 7106 - l .h173354 - 

t The author was informed from D r  T Deguchi that this observation was also given by Dr S Nakaya 
(1990, unpublished). 
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-1.38 

-1.40 'm 
i n ]  

-1.50 m 

-1.52 . , . I .  I .  I .  I .  I .  
0 0.01 0.02 0.03 0.04 0.05 0.08 0 

l / N 2  

i bI 

p -1.9 

Y .1 
-2.0 

0 0.02 0.04 0.06 0.08 0.10 0 

1 1 ~ 7  

Figure 2 Ground-slate energies per sile against I/" for lhe mlional gl(mln) chain: 
(0 )  (n,n) = (2,1);  (b)  ( 3 , l ) .  

The ground-state energy per site at finite size N should behave as 

for a system with conformal invariance [19, 201. We have, therefore, plotted the result 
of the calculation choosing l / N Z  as the horizontal axis. 

We find numerically that the first few excited energies of the (2 ,2)  and ( 2 , 3 )  
model agree with those of the ( 2 , l )  model. Similarly, the low excitation energies of 
the (3,2) model coincide with those of the ( 3 , l )  model. 

These results suggest that for the system ( m ,  n )  = ( I  > 1, k) with its linear size 
l p  the ground state is given by (p ,  . . . , p ,  0, . . . ,O). (Hereafter we call the states 
'half-filling' if n, f . . . f n, = Ip ,  and charge excited states if n1 f . . . + n, < Ip.) 
The result for the ground state is natural and gives an explanation as to why the 
supersymmetric t-J model behaves in a very similar way to the Heisenberg model at 

SU(2) because of the symmetry-breaking term. 
These results can be generalized to the assertion that gl(m[n) is reduced to 

SU(m) at least for the ground state. This is the main result in this article. The 
excited spectra reflect the full SU(m) x SU(n)  symmetry of the Hamiltonian (2'). 

..".. hi l f  fillinn ....... 6' Thp -..- wmme.tTv " inhe.rit?.rl in the. mntlel & gI(2[1); hnwever thk rcdgc.e.s 
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We also calculated the dispersion relations of elementary excitations for the ( 2 , l )  
model (N = 6) and for the ( 3 , l )  model (N = 9). We estimate the sound velocities 
from these data, given in table 3. Then formula (6) yields the central charges. 'Aking 
account of logarithmic mrrections, we estimate that the central charges for the (2,  n) 
and ( 3 , n )  models are 1 and 2, respectively. 

Tabk 3. Sound veldties and central charges for ( 2 , l )  and ( 3 , l )  models. 

Sound velocily c e ( N - m )  

( 2 , l )  -3.443058 -1.038. . .  1 
( 3 , l )  -2.252052 -2.231. . .  2 

4. Analyses through the Bethe ansatz equation 

Having identified the ground state, we can analyse the low excitations by using equa- 
tion (3) and standard techniques for dealing with the BAE. We first recall known 
l c i D Y l l D  ,"I \ , , L , , L J  - \ L , ' J .  

Bares and Blatter [14] started with another BAE which takes a different form from 
the present one, although these two approaches are equivalent. They found that the 
spin excitation should be described by the des Cloizeaux-Pearson mode at half-filling. 
Away from half-filling, both charge and spin excitation become massless. They can be 
regarded as two Gaussian fields compactified on tori with different radii [16], which 
is a common feature of the Luttinger liquids [20]. 

BAE (3) gives a more natural explanation for the Bares and Blatter result. It is 
clear that the BAE for ( C ~ , C ~ , E ~ )  = (1 ,1 , -1 )  is equivalent to that for the X X X  
model if the number of roots is N, = N / 2 .  N 2  = 0. Note that the present model 
and the X X X  model have the same expression for the energy in terms of {z:). 
Therefore it is apparent that the BAE leads to their result more straightforwardly. 

Then let us consider the case m > 2. As a natural generalization, we identify 
m components as 'particles' and n components as 'vacancies'. It is now clear that at 
half-filling the BAE is equivalent to that for the SU(m) model. Then we can utilize 
the results of the standard method of finite-size correction [21-U]. The central charge 
for the SU(m) model is equal to its rank, m - 1. This is consistent with our data in 
table 3 for the ( 2 , l )  and ( 3 , l )  models. The scaling dimensions can also be derived 
as long as we are concerned with 'spin' excitations. Let C be the Cartan matrix for 
A,,,-l type Lie algebra. We furthermore introduce two vectors r and s that have 
integer components. They represent the indices of the excitations. Then the scaling 
dimension A has form 

--̂ ..,*" Fer I- -, - ," 1, 

1 A = -TcT + SSc-ls 
9 4 

(7) 

with g = 4 at the rational k e d  point. The two vectors, T and s, have been interpreted 
as the generalized spin and vorticity indices. 

In the half-filling case, we can easily verify that the dispersion relation for the 
charge excitation is not linear. It therefore breaks the Lorentz invariance. Suppose 
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that the symmetry-breaking term (namely the chemical potential term) is given by 
h, = -he, and 0 < h < 1. There should be a critical wlue h, below which 
the ground state is no longer given by the SU(m) symmetric state but is different 
from half-filling. We then expect that both the 'spin' and 'charge' excitations will 
be massless [16] below h,. These excitation energies are determined by the dressed 
energy function formulation [24]. ?he critical potential is estimated as follows. Let UF 
write the chemical potential term as h,e,,, .  Then the dressed energy functions 
are given by the solution of the following integral equations. 

where Ta,P are defined by 

T , - l , i ( ~ ) = - + ' ( + , f )  i = 2  ,..., q ;  i # m + ~  

Tm,rn+l(x) = +'(I? f) 
Ti,;(x)=$'(Z,1)  i = l )  . . . ,  q ;  i + m  

and 7',j = 0, othenvise. E?) signify 
(0) - E1 

E ? ) = h i - h i + ,  i = 2 ,  . . . , q  

- +'(z, f )  + h, - h2 

and $(z, y) is given by 

+(x ,y )  = ilog (-=) 
x - ly 

Furthermore we demand E , ( A , )  = 0, which is equivalent to the condition of a 
mnlmrl (.+-to &th f i n l A r  
6.Y..L," 0 L U . I  -.La. E."-., Ilrl"1. 

Remember that {hi} is given by 
(h i>h23 . . .  . hm,h f l ,+ l , .  . . , h q + l )  = ( - h , - h % .  . . , - h , h , .  . . , h )  (9) 
in the present case. For h = 1, E:=' is given by 

d k  CY = 1, ... , m -  1 
02 e,kz.sinh k ( m -  a ) / 2  

sinh k m / 2  

E:='(.) = 0 CY = m , .  . .  , q .  (lob) 
We consider equation (&I) for a = m. It is reasonable to assume that A,+, is 
infinitesimally small if h - h,. We therefore neglect the contribution from the term 
containing an integral over [-A,+,, Am+l] .  We also assume that E,(z )  has minima 
at x = 0 in the interval [ -A2, ,A,] .  Then the condition for the critical potential is 
given by 

(11) 
This leads to a conclusion 

E,( T = 0)  = 0. 

For m = 2 ,  the right-hand side of equation (12) is numerically given by 0.693 147. 
On the other hand, assuming the scaling form, h, (for size N chain) - h, (for 
infinite system) + constant/N2t, we obtain a crude estimation from the finite chain 

t This atraplation technique was suggested to the author by Professor V Rillenberg. 
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lhbk 4 Crilical values of chemical plenlial for given syslem Sizes, 

System size h, 

6 -0.598 57 
8 -0.63402 

10 -0.653 04 
12 -0.66409 

calculation (table 4), h, - 0.686. 
This is close to the result derived from the earlier assumptions. This fact supports 

the validity of our assumptions. 
Let us present the interpretation of the model in terms of field theoretical lan- 

guage, before closing this section. 
Judging from the scaling dimensions (7), we expect that the effective field theory 

underlying this model at half-filling will be described by the Gaussian field compact- 
ified on A,_1 torus. Such a field theory has been proposed by Kostov [25], Fateev 
and Lukyanov 1261. Let A i  ( i  = 1,. . . , m - 1) be fundamental weights for A,_,,  
and let 4, be Gaussian fields. We consider a field Q given by &Ai. Then the 
field theoretical version of the present model at half-filling is described by the action 

A =  - ( 8 @ ) ? d 2 r  
“ g  2 J 

Away from half-filling, we should also consider charge excitations and many other 
composite excitations. Their excitation spectra and other thermodynamic properties 
are determined by solving equation (&) at arbitrary filling. Rigidities to various 
excitations, namely the Fermi velocities, are given by [24] 

where p,(z)( a = 1 , .  . . , q )  denote the densities of the roots of the BAE. The Fermi 
velocities depend on h,. We thus expect that the effective field theory underlying 
the model away from half-filling also to be given by the multi-component Gaussian 
model but with different radii of compactifications 

This is the natural generalization of the observation by Kawakami and Yang [16] in 
the case of ( m , n )  = ( 2 , l ) .  

5. Future problems and conclusion 

In this article, we have numerically and analytically studied I D  spin chains associated 
with the gl(mln) vertex model. We find that the symmetry of the ground state is 
SU(m) in the rational case. The solvable 1-J model is an example of the present 
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model. Thus we have succeeded in generalizing the results of the t-J model, gl(211), 
to the gI(m1n) cases. 

We present two open questions which we have found in our numerical calculations 
in the end. 

(i) Throughout the arguments in sections 3 and 4 we have assumed m > 1. 
We also performed numerical calculations on the (m, R )  = (1, q )  model (figure 3, 
table 5 ) .  

0 0.01 0.02 0.03 0.04 0.05 0.06 0 
__.. 
l / N 2  

7 

Figure 3. Ground-state energies per sile against 1/N2 for the rational gI(112) chain. 
We have numerically verified that lhe ground-state energy is given by the same d u e s  
for gl( I ln).  

Tabk 5. Ground energy per Site of the gl(1lm) model. 

System size Ground-slaie energy 

4 -0.707 1068 
6 -0,666666 1 
8 -0.6532815 

10 -0.647213 6 
12 -0.643 9506 

It is well known that the model reduces to the free fermion one in the case 
of (1,l). Although we have not given any details of the data, the lowest energy 
for any q is the same as that for q = 1. When q 2 2, the lowest energy states 
are degenerate in each case of q. In fact a set of quantum numbers that satisfies 
nl = Cj,, nj = N / 2  can lead to the ground-state energy. This is what we have 
found by numerical calculations, which are, as yet, not very general. Hence we can 
only state this proposition as a conjecture. 

(ii)ThePerk-Schultzmodelwith f ( r ) = s i i i ( r ) a n d  h ,  = O ( a = l ,  . . . , q +  1 )  
is now a problem of current interest 127-291. It is interesting to see whether the 
main results of the present paper (obtained for the rational case) hold true in the 
trigonometric case. Our model contains the chemical potential as an important factor. 
Hence we include the chemical potential term 

- cos x c e,e;,a. (16) 
i . 0  
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This chemical potential reduces to the previous one ( h  = 1) in the rational limit. 
Moreover, it is invariant under the simultaneous transformations: X - T - A ,  eo + 

-ee. We should remark that our choice is nor the only possible form that satisfies 
these WO conditions. 

In the case of the (m ,n )  = ( 2 , l )  model, we have found that the ground state 
has SU(2) symmetry for X = r / l ,  1 = 4 -. 8. 

1 -1.40 

.- 
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

l /Ni 

Figure 4 Ground-slate energies per Site againsl 1/N2 for the trigonometric gl(2ll)  
chain wilh chemical potential term (17). ?he mupling mnslanl X is chosen lo k -17. 

It is, however, impossible to tell which is the ground state for X Y r/Z because of 
the smallness of the system. We cannot disregard the possibility that the true ground 
state is incommensurate with the lattice for the system size with which we can deal. 
(This is the case for the Hubbard model in a magnetic field [30].) It is, however, 
difficult to deal with a larger sized system by the direct matrix diagonalization method, 
since the Hamiltonian is not Hermite. Further careful studies, possibly by analyses of 
the BAE, are needed to make a conclusive statement in the trigonometric case. 

We hope to discuss these questions in future publications. 
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